Lecture 6

Robb T. Koether

Hampden-Sydney College

Mon, Feb 13, 2017

Outline

Outline

- Every statement must be either true or false.
- It is impossible to correctly deduce a false statement from a true statement.
- A false statement can be deduced only from a false statement.
- This is the basis of proof by contradiction: If the supposition $\neg P$ leads to a false statement, then $\neg P$ must be false, and therefore P must be true.

- To prove the statement P ⇒ Q by contradiction, we suppose that its negation is true and then deduce a false statement from that negation.
- The negation of $P \Rightarrow Q$ is $P \land \neg Q$.
- To prove by contradiction that P ⇒ Q, we suppose that P is true and Q is false and then reach a contradiction (a false statement).

Example

Theorem

 $\sqrt{2}$ is irrational.

Example

Theorem

Let x be a real number. If $x^2 = 2$, then $x \neq \frac{a}{b}$ for any choice of integers a and b.

- Let P be the statement " $x^2 = 2$."
- Let Q be the statement " $x \neq \frac{a}{b}$ for any choice of integers a and b."
- Then $\neg Q$ is the statement " $x = \frac{a}{b}$ for some choice of integers a and b."

Proof.

We will use proof by contradiction.

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.
- Then

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.
- Then

$$bx = a$$

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.
- Then

$$bx = a,$$
$$b^2x^2 = a^2,$$

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.
- Then

$$bx = a,$$

$$b^2x^2 = a^2,$$

$$2b^2 = a^2.$$

Proof.

- We will use proof by contradiction.
- Let be x a real number and suppose that $x^2 = 2$ and $x = \frac{a}{b}$ for some choice of integers a and b.
- Assume that a and b have no factor in common.
- Then

$$bx = a,$$

$$b^2x^2 = a^2,$$

$$2b^2 = a^2.$$

• Then a^2 is even and it follows that a is even. (Why?)

Proof.

• Let a = 2k for some integer k.

- Let a = 2k for some integer k.
- Then

- Let a = 2k for some integer k.
- Then

$$2b^2=(2k)^2,$$

- Let a = 2k for some integer k.
- Then

$$2b^2 = (2k)^2,$$

 $2b^2 = 4k^2,$

Proof.

- Let a = 2k for some integer k.
- Then

$$2b^2 = (2k)^2,$$

 $2b^2 = 4k^2,$
 $b^2 = 2k^2.$

9/13

Proof.

- Let a = 2k for some integer k.
- Then

$$2b^{2} = (2k)^{2},$$

 $2b^{2} = 4k^{2},$
 $b^{2} = 2k^{2}.$

• By the same reasoning as before, *b* must be even.

- Let a = 2k for some integer k.
- Then

$$2b^2 = (2k)^2,$$

 $2b^2 = 4k^2,$
 $b^2 = 2k^2.$

- By the same reasoning as before, *b* must be even.
- But a and b have no factor in common.

- Let a = 2k for some integer k.
- Then

$$2b^{2} = (2k)^{2},$$

 $2b^{2} = 4k^{2},$
 $b^{2} = 2k^{2}.$

- By the same reasoning as before, *b* must be even.
- But a and b have no factor in common.
- That is a contradiction.

- Let a = 2k for some integer k.
- Then

$$2b^{2} = (2k)^{2},$$

 $2b^{2} = 4k^{2},$
 $b^{2} = 2k^{2}.$

- By the same reasoning as before, *b* must be even.
- But a and b have no factor in common.
- That is a contradiction.
- Therefore, $\sqrt{2}$ is irrational.

Theorem

Let a, b, c, and d be integers. If a + b + c + d is odd, then a is odd or b is odd or c is odd or d is odd.

Contradiction vs. Contraposition

• Suppose we want to prove by contradiction that $A \Rightarrow B$.

- Suppose we want to prove by contradiction that $A \Rightarrow B$.
- We begin by supposing that $A \wedge \neg B$.

- Suppose we want to prove by contradiction that $A \Rightarrow B$.
- We begin by supposing that $A \wedge \neg B$.
- From that we derive the contradiction $A \land \neg A$ and conclude that $A \Rightarrow B$.

- Suppose we want to prove by contradiction that $A \Rightarrow B$.
- We begin by supposing that $A \wedge \neg B$.
- From that we derive the contradiction $A \land \neg A$ and conclude that $A \Rightarrow B$.
- How does this differ from proof by contraposition?

- Suppose we want to prove by contradiction that $A \Rightarrow B$.
- We begin by supposing that $A \wedge \neg B$.
- From that we derive the contradiction $A \land \neg A$ and conclude that $A \Rightarrow B$.
- How does this differ from proof by contraposition?
- Which method is to be preferred?

Example

Theorem

Let a and n be integers. If a > 1 and $a \mid n$, then $a \nmid n + 1$.

Example

Theorem

There are infinitely many primes.